Takes a polynomial ring $R = \mathbb{K}[x_1,\dotsc,x_n]$ and creates the ring $S = R[dx_1,\dotsc,dx_n]$.
i1 : R = QQ[x_1..x_3, a,b]; |
i2 : S = diffOpRing R; |
i3 : gens S o3 = {dx , dx , dx , da, db} 1 2 3 o3 : List |
i4 : coefficientRing S o4 = R o4 : PolynomialRing |
Differential operators on $R$ have entries in $S$.
i5 : ring diffOp(dx_3^2) === S o5 = true |
i6 : ring diffOp(a_R) === S o6 = true |
Subsequent calls to diffOpRing will not create new rings
i7 : diffOpRing R === S o7 = true |
the created ring is not a Weyl algebra, it is a commutative ring
The object diffOpRing is an a cache function.